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Treatment of (25R)-3~-acetoxy-5c~-spirostan-23-one (23-0x0-tigogenin acetate) 3 with titanium tetrachloride afforded 
the 22-0x0-23-spiroacetal isomer 4 in excellent yield. 

Spiroacetals enjoy widespread occurrence as the substructure 
of many compounds available from a diverse range of natural 
sources including insects, microbes, plants, fungi and marine 
organisms. 1 Among these natural products the spirostan 
sapogenins form a well-defined class and several reviews 
concerning them have been reported.2 These compounds 
contain a spiroacetal moiety fused to  the ring D of the 
steroidal nucleus (e.g.  tigogenin, Scheme 1). 

A similar spiroacetal assembly has also been found in a few 
triterpenoid saponins, for example: cimicifugoside and actein 
(Scheme l), the former isolated from the roots of Cirnicifuga 
simplex3~' which exhibits potent immunosuppressive ac- 
tivity,",' and the latter from the rhizome of Acteu racemosa.4 
In these compounds the spiroacetal unit is attached at C-23 in 
ring D (steroids numbering). 

To the best of our knowledge no steroidal C-23 spiroacetal 
sapogenin has been isolated from a natural source. Since the 
chemistry of C-22 spiroacetal steroidal sapogenins (spirostan 
sapogenins) has been studied in some detai1,S a comparative 
study of the chemical behaviour of their isomeric C-23 
spiroacetal analogues would be of interest. Piancatelli et a2.h 
have reported the synthesis of such a C-23 spiroacetal steroidal 
sapogenin 2 from 1 (Scheme 1). However, the multistep 
synthesis resulted in a low overall yield and provided material 
with a C-20 stereochemistry opposite to  that of the natural 
steroids along with an unassigned configuration at C-25. 

Herein we report an approach to the synthesis of steroidal 
C-23 spiroacetal sapogenins via a new, mild and efficient 
Lewis acid mediated isomerisation of a 23-0x0-22-spiroacetal. 
Thus, treatment of (25R)-3[3-acetoxy-Sa-spirostan-23-one 
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(23-0x0-tigogenin acetate) 37 with titanium tetrachloride (2.5 
equiv.) in dichloromethane under argon atmosphere at room 
temperature for 30 min. provided the isomer 22-0x0-23- 
spiroacetal4-f- as a single product in excellent yield (99%) after 

i- Selected spectroscopic data ('H NMR at 200 MHz and 13C NMR at 
50.3 MHz in CDC13, 6 in ppm to Me4Si, W and J in Hz; IR in CHC13, 
v,,,lcm-l) for 4: IR,  1725, 1250, 1020; IH NMR, 0.79 (s, 18-H3), 0.90 

AcO). 2.35 (m, w 22, 25-H), 2.73 (m, w 16, 20-H), 3.47 (t,  J 8.6, 
26-H), 4.06 (t, J7.6,26-H), 4.30 (m, w 22, 16-H), 4.60 (m, w 25,3-H); 
l3CNMR,72.82(d),73.53(d),7S.23(t), 107.96(s), 170.59(s),213.46 
(s);MS(15eV)mlz (%0)472(M+, I);MS(70eV)442(Mt-2Me,2), 
344 (79), 122 (100); MS high resolution mlz (calc. for) 442.2850 

(122.1076 = C9HI4). For 5 :  IR,  3590,1720,1250,1020. lH NMR, 0.82 
(s, 3H), 0.84 (s, 3H), 1.02 (d, J 6.6, 3H), 1.04 (d, J 6 . 6 ,  3H), 2.02 (s, 

(s, 19-H3), 0.99 (d, J 6.8, 21-H3), 1.02 (d, J 6.5, 27-H3), 1.95 (s ,  3H, 

(442.2717 = C23H3805), 344.2718 (344.2713 = C23H3602), 122.1085 

3H, AcO), 2.61 (dd, J8 .6 ,  8.5, IH),  3.42 (AMX, JAM 10.4, J A X  8.2, 
26-H), 3.52 (A'M'X', J A ' M '  11.7, J A g X '  4.0, 22-H), 3.92 (t,  J 7.6, 
26-H), 4.19 (m, w 20,16-H), 4.67 (m, w 20,3-H); 13C NMR, 60.17 (d), 
71.60 (d), 73.39 (t), 73.65 (d), 75.96 (d), 112.16 (s), 170.70 (s),; MS 
(70 e V) m/z (YO) 474 (M+,  l), 101 (100); MS high resolution mlz (calc. 

CSH9O2). For 6: I R ,  3590, 1715, 1250, 1015; lH NMR, 0.76 (s, 3H), 
0.83 (s, 3H), 1.03 (d,J6.4,3H), 1.13 (d,J6.9,3H),2.01 (s, 3H, AcO), 

8.2, 26-H), 3.97 (t,  17 .3 ,  26-H), 4.31 (m, w 17, 36-H), 4.68 (m, w20, 

170.53 (s); MS (70 e V) mlz (%) 474 (M+, l ) ,  101 (100); MS high 
resolution mlt (calc. for) 474.3368 (474.3345 = C29H4605), 101.0634 

for) 474.3353 (474.3345 = C2$&605), 101.0590 (101.0603 = 

3.01 (bs, w 4, 0 - H ) ,  3.45 (d, J 1.7,22-H), 3.55 (AMX, J A M  10.1, J A X  

3-H); 13C NMR, 73.19 (d), 73.70 (d), 74.06 (t), 76.35 (d), 108.31 (s), 

(101.0603 = CsH902). 
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Scheme 2 Reagents and conditions: i, TiC14 (2.5 equiv.), CH2C12, room 
temp., 30 min, 99%; ii, NaBH4, EtOH,  room temp., 5 min, 95% 

radial chromatography (Scheme 2). If the amount of Lewis 
acid is decreased not only is a longer reaction time required 
but also side-products are observed. 

Since the opening rings E and F were involved in the 
reaction, the stereochemistry of the new spiroacetal centre, 
C-23, was expected to be controlled by the anomeric effect,8 
resulting in the 23R epimer. However, X-ray diffraction 
analysis to confirm this was considered desirable. Since 
repeated attempts to obtain suitable crystals of the ketone 4 
were unsuccessful we sought a derivative that would furnish 
quality crystals. Reduction of the ketone with sodium borohy- 
dride afforded the separable diastereoisomeric alcohols 5 and 
6-f- (2.2 : l), in 95% yield. Suitable crystals of alcohol 6 were 
obtained and the X-ray crystal structure determined$ (Fig. 1). 
This revealed an R configurated spiroacetal centre. As the 
spiroacetal centre is unaffected by reduction of the ketone, the 
Lewis acid isomerisation of 3 gave the product whose 

$ Crystal data for 6: a crystal measuring 0.3 x 0.3 x 1.2 mm was 
mounted on an Enraf-Nonius CAD4-F diffractometer equipped with 
a Cu-KCY radiation source (A = 1.54180 A), CZ9H4605. Space group 
El, monoclinic, a = 10.72(1), b = 7.64(1), c = 16.10(2) A, (3 = 
93.75(6)", 2 = 2, D, = 1.191 g ~ m - ~ ,  U = 1316 A3. The origin in M I  
was fixed by the method of Flack and Schwarzenbach.9 Data were 
collected in an 13-28 scan mode from 1 to 70" to yield 2836 unique 
reflections of which 2574 were considered observed having I > 30(/). 
The structure was solved by direct methods and refined using 
full-matrix least-squares analysis to give a final R = 0.081 ( R ,  = 
0.096). SHELXS-86 (G. Sheldrick, SHELXS-86 User Guide, Gdt- 
tingen, Germany, 1986) was used for direct methods and CRYSTALS 
(D. J. Watkin, J. R.  Carruthers and P. W. Betteridge, CRYSTALS 
User Guide, Chemistry Crystallography Laboratory, Oxford Univer- 
sity, Oxford, UK, 1985) for all other least-squares calculations. 
Atomic coordinates, bond lengths and angles, and thermal paramet- 
ers have been deposited at the Cambridge Crystallographic Data 
Centre. See Notice to Authors, Issue No. 1. 
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Fig. 1 The molecular structure of 6 

stereochemistry was controlled by the anomeric effect as 
expected. 

In summary, we have shown that the new Lewis acid 
isomerisation of the oxo-spiroacetal 2 proceeds in excellent 
yield to the C-23 steroidal sapogenin 4, whose stereochemistry 
is identical with that of naturally occurring analogues. Further 
investigations into the mechanism of this rearrangement and 
its scope and generality are underway. 
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